Molecular strategies for modulating Wnt signaling.
نویسندگان
چکیده
The importance of the Wnt signaling cascade in the fields of developmental biology, regenerative medicine, cancer genetics, and neurobiology has fueled a wide search for potent pharmacological agents capable of controlling Wnt signaling. Numerous fields of study have lent assistance to this endeavor, yielding both natural and synthetic compounds that are capable of inducing or inhibiting Wnt at multiple stages within the pathway. Further, there is a large of body research which has investigated endogenous Wnt inducers and inhibitors, namely the secreted Wnts, Dickkof proteins, secreted Frizzled-Related Proteins, and Wnt Inhibitory Factor-1, along with others which may act via indirect means to stimulate or inhibit Wnt (e.g. the Smads, bone morphogenetic proteins, and Hedgehog proteins). This review will summarize the research surrounding currently available small molecules used to target Wnt signaling. These compounds will be classified based upon their ability to stimulate or inhibit Wnt, their derivation (natural or synthetic), and their specific mechanism of action.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملAngiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway
Objective(s): Hepatocellular carcinoma (HCC) is one of the leading fatal neoplasms and the most common primary liver malignancy worldwide. Peptide hormone ANGPTL8 (betatrophin) may act as an important regulator in HCC development through the Wnt/β-catenin pathway. We aimed to evaluate the effects of recombinant ANGPTL8 on Wnt/β-catenin signaling in human liver carcinom...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience
دوره 22 شماره
صفحات -
تاریخ انتشار 2017